version 1.1.1.1, 2010/01/26 15:22:45
|
version 1.11, 2014/01/27 09:28:12
|
Line 1
|
Line 1
|
|
*> \brief \b DGEMV |
|
* |
|
* =========== DOCUMENTATION =========== |
|
* |
|
* Online html documentation available at |
|
* http://www.netlib.org/lapack/explore-html/ |
|
* |
|
* Definition: |
|
* =========== |
|
* |
|
* SUBROUTINE DGEMV(TRANS,M,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY) |
|
* |
|
* .. Scalar Arguments .. |
|
* DOUBLE PRECISION ALPHA,BETA |
|
* INTEGER INCX,INCY,LDA,M,N |
|
* CHARACTER TRANS |
|
* .. |
|
* .. Array Arguments .. |
|
* DOUBLE PRECISION A(LDA,*),X(*),Y(*) |
|
* .. |
|
* |
|
* |
|
*> \par Purpose: |
|
* ============= |
|
*> |
|
*> \verbatim |
|
*> |
|
*> DGEMV performs one of the matrix-vector operations |
|
*> |
|
*> y := alpha*A*x + beta*y, or y := alpha*A**T*x + beta*y, |
|
*> |
|
*> where alpha and beta are scalars, x and y are vectors and A is an |
|
*> m by n matrix. |
|
*> \endverbatim |
|
* |
|
* Arguments: |
|
* ========== |
|
* |
|
*> \param[in] TRANS |
|
*> \verbatim |
|
*> TRANS is CHARACTER*1 |
|
*> On entry, TRANS specifies the operation to be performed as |
|
*> follows: |
|
*> |
|
*> TRANS = 'N' or 'n' y := alpha*A*x + beta*y. |
|
*> |
|
*> TRANS = 'T' or 't' y := alpha*A**T*x + beta*y. |
|
*> |
|
*> TRANS = 'C' or 'c' y := alpha*A**T*x + beta*y. |
|
*> \endverbatim |
|
*> |
|
*> \param[in] M |
|
*> \verbatim |
|
*> M is INTEGER |
|
*> On entry, M specifies the number of rows of the matrix A. |
|
*> M must be at least zero. |
|
*> \endverbatim |
|
*> |
|
*> \param[in] N |
|
*> \verbatim |
|
*> N is INTEGER |
|
*> On entry, N specifies the number of columns of the matrix A. |
|
*> N must be at least zero. |
|
*> \endverbatim |
|
*> |
|
*> \param[in] ALPHA |
|
*> \verbatim |
|
*> ALPHA is DOUBLE PRECISION. |
|
*> On entry, ALPHA specifies the scalar alpha. |
|
*> \endverbatim |
|
*> |
|
*> \param[in] A |
|
*> \verbatim |
|
*> A is DOUBLE PRECISION array of DIMENSION ( LDA, n ). |
|
*> Before entry, the leading m by n part of the array A must |
|
*> contain the matrix of coefficients. |
|
*> \endverbatim |
|
*> |
|
*> \param[in] LDA |
|
*> \verbatim |
|
*> LDA is INTEGER |
|
*> On entry, LDA specifies the first dimension of A as declared |
|
*> in the calling (sub) program. LDA must be at least |
|
*> max( 1, m ). |
|
*> \endverbatim |
|
*> |
|
*> \param[in] X |
|
*> \verbatim |
|
*> X is DOUBLE PRECISION array of DIMENSION at least |
|
*> ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n' |
|
*> and at least |
|
*> ( 1 + ( m - 1 )*abs( INCX ) ) otherwise. |
|
*> Before entry, the incremented array X must contain the |
|
*> vector x. |
|
*> \endverbatim |
|
*> |
|
*> \param[in] INCX |
|
*> \verbatim |
|
*> INCX is INTEGER |
|
*> On entry, INCX specifies the increment for the elements of |
|
*> X. INCX must not be zero. |
|
*> \endverbatim |
|
*> |
|
*> \param[in] BETA |
|
*> \verbatim |
|
*> BETA is DOUBLE PRECISION. |
|
*> On entry, BETA specifies the scalar beta. When BETA is |
|
*> supplied as zero then Y need not be set on input. |
|
*> \endverbatim |
|
*> |
|
*> \param[in,out] Y |
|
*> \verbatim |
|
*> Y is DOUBLE PRECISION array of DIMENSION at least |
|
*> ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n' |
|
*> and at least |
|
*> ( 1 + ( n - 1 )*abs( INCY ) ) otherwise. |
|
*> Before entry with BETA non-zero, the incremented array Y |
|
*> must contain the vector y. On exit, Y is overwritten by the |
|
*> updated vector y. |
|
*> \endverbatim |
|
*> |
|
*> \param[in] INCY |
|
*> \verbatim |
|
*> INCY is INTEGER |
|
*> On entry, INCY specifies the increment for the elements of |
|
*> Y. INCY must not be zero. |
|
*> \endverbatim |
|
* |
|
* Authors: |
|
* ======== |
|
* |
|
*> \author Univ. of Tennessee |
|
*> \author Univ. of California Berkeley |
|
*> \author Univ. of Colorado Denver |
|
*> \author NAG Ltd. |
|
* |
|
*> \date November 2011 |
|
* |
|
*> \ingroup double_blas_level2 |
|
* |
|
*> \par Further Details: |
|
* ===================== |
|
*> |
|
*> \verbatim |
|
*> |
|
*> Level 2 Blas routine. |
|
*> The vector and matrix arguments are not referenced when N = 0, or M = 0 |
|
*> |
|
*> -- Written on 22-October-1986. |
|
*> Jack Dongarra, Argonne National Lab. |
|
*> Jeremy Du Croz, Nag Central Office. |
|
*> Sven Hammarling, Nag Central Office. |
|
*> Richard Hanson, Sandia National Labs. |
|
*> \endverbatim |
|
*> |
|
* ===================================================================== |
SUBROUTINE DGEMV(TRANS,M,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY) |
SUBROUTINE DGEMV(TRANS,M,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY) |
|
* |
|
* -- Reference BLAS level2 routine (version 3.4.0) -- |
|
* -- Reference BLAS is a software package provided by Univ. of Tennessee, -- |
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- |
|
* November 2011 |
|
* |
* .. Scalar Arguments .. |
* .. Scalar Arguments .. |
DOUBLE PRECISION ALPHA,BETA |
DOUBLE PRECISION ALPHA,BETA |
INTEGER INCX,INCY,LDA,M,N |
INTEGER INCX,INCY,LDA,M,N |
Line 8
|
Line 170
|
DOUBLE PRECISION A(LDA,*),X(*),Y(*) |
DOUBLE PRECISION A(LDA,*),X(*),Y(*) |
* .. |
* .. |
* |
* |
* Purpose |
|
* ======= |
|
* |
|
* DGEMV performs one of the matrix-vector operations |
|
* |
|
* y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y, |
|
* |
|
* where alpha and beta are scalars, x and y are vectors and A is an |
|
* m by n matrix. |
|
* |
|
* Arguments |
|
* ========== |
|
* |
|
* TRANS - CHARACTER*1. |
|
* On entry, TRANS specifies the operation to be performed as |
|
* follows: |
|
* |
|
* TRANS = 'N' or 'n' y := alpha*A*x + beta*y. |
|
* |
|
* TRANS = 'T' or 't' y := alpha*A'*x + beta*y. |
|
* |
|
* TRANS = 'C' or 'c' y := alpha*A'*x + beta*y. |
|
* |
|
* Unchanged on exit. |
|
* |
|
* M - INTEGER. |
|
* On entry, M specifies the number of rows of the matrix A. |
|
* M must be at least zero. |
|
* Unchanged on exit. |
|
* |
|
* N - INTEGER. |
|
* On entry, N specifies the number of columns of the matrix A. |
|
* N must be at least zero. |
|
* Unchanged on exit. |
|
* |
|
* ALPHA - DOUBLE PRECISION. |
|
* On entry, ALPHA specifies the scalar alpha. |
|
* Unchanged on exit. |
|
* |
|
* A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). |
|
* Before entry, the leading m by n part of the array A must |
|
* contain the matrix of coefficients. |
|
* Unchanged on exit. |
|
* |
|
* LDA - INTEGER. |
|
* On entry, LDA specifies the first dimension of A as declared |
|
* in the calling (sub) program. LDA must be at least |
|
* max( 1, m ). |
|
* Unchanged on exit. |
|
* |
|
* X - DOUBLE PRECISION array of DIMENSION at least |
|
* ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n' |
|
* and at least |
|
* ( 1 + ( m - 1 )*abs( INCX ) ) otherwise. |
|
* Before entry, the incremented array X must contain the |
|
* vector x. |
|
* Unchanged on exit. |
|
* |
|
* INCX - INTEGER. |
|
* On entry, INCX specifies the increment for the elements of |
|
* X. INCX must not be zero. |
|
* Unchanged on exit. |
|
* |
|
* BETA - DOUBLE PRECISION. |
|
* On entry, BETA specifies the scalar beta. When BETA is |
|
* supplied as zero then Y need not be set on input. |
|
* Unchanged on exit. |
|
* |
|
* Y - DOUBLE PRECISION array of DIMENSION at least |
|
* ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n' |
|
* and at least |
|
* ( 1 + ( n - 1 )*abs( INCY ) ) otherwise. |
|
* Before entry with BETA non-zero, the incremented array Y |
|
* must contain the vector y. On exit, Y is overwritten by the |
|
* updated vector y. |
|
* |
|
* INCY - INTEGER. |
|
* On entry, INCY specifies the increment for the elements of |
|
* Y. INCY must not be zero. |
|
* Unchanged on exit. |
|
* |
|
* Further Details |
|
* =============== |
|
* |
|
* Level 2 Blas routine. |
|
* |
|
* -- Written on 22-October-1986. |
|
* Jack Dongarra, Argonne National Lab. |
|
* Jeremy Du Croz, Nag Central Office. |
|
* Sven Hammarling, Nag Central Office. |
|
* Richard Hanson, Sandia National Labs. |
|
* |
|
* ===================================================================== |
* ===================================================================== |
* |
* |
* .. Parameters .. |
* .. Parameters .. |
Line 231
|
Line 301
|
END IF |
END IF |
ELSE |
ELSE |
* |
* |
* Form y := alpha*A'*x + y. |
* Form y := alpha*A**T*x + y. |
* |
* |
JY = KY |
JY = KY |
IF (INCX.EQ.1) THEN |
IF (INCX.EQ.1) THEN |