version 1.6, 2010/12/21 13:51:24
|
version 1.17, 2023/08/07 08:38:43
|
Line 1
|
Line 1
|
|
*> \brief \b DGEMM |
|
* |
|
* =========== DOCUMENTATION =========== |
|
* |
|
* Online html documentation available at |
|
* http://www.netlib.org/lapack/explore-html/ |
|
* |
|
* Definition: |
|
* =========== |
|
* |
|
* SUBROUTINE DGEMM(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC) |
|
* |
|
* .. Scalar Arguments .. |
|
* DOUBLE PRECISION ALPHA,BETA |
|
* INTEGER K,LDA,LDB,LDC,M,N |
|
* CHARACTER TRANSA,TRANSB |
|
* .. |
|
* .. Array Arguments .. |
|
* DOUBLE PRECISION A(LDA,*),B(LDB,*),C(LDC,*) |
|
* .. |
|
* |
|
* |
|
*> \par Purpose: |
|
* ============= |
|
*> |
|
*> \verbatim |
|
*> |
|
*> DGEMM performs one of the matrix-matrix operations |
|
*> |
|
*> C := alpha*op( A )*op( B ) + beta*C, |
|
*> |
|
*> where op( X ) is one of |
|
*> |
|
*> op( X ) = X or op( X ) = X**T, |
|
*> |
|
*> alpha and beta are scalars, and A, B and C are matrices, with op( A ) |
|
*> an m by k matrix, op( B ) a k by n matrix and C an m by n matrix. |
|
*> \endverbatim |
|
* |
|
* Arguments: |
|
* ========== |
|
* |
|
*> \param[in] TRANSA |
|
*> \verbatim |
|
*> TRANSA is CHARACTER*1 |
|
*> On entry, TRANSA specifies the form of op( A ) to be used in |
|
*> the matrix multiplication as follows: |
|
*> |
|
*> TRANSA = 'N' or 'n', op( A ) = A. |
|
*> |
|
*> TRANSA = 'T' or 't', op( A ) = A**T. |
|
*> |
|
*> TRANSA = 'C' or 'c', op( A ) = A**T. |
|
*> \endverbatim |
|
*> |
|
*> \param[in] TRANSB |
|
*> \verbatim |
|
*> TRANSB is CHARACTER*1 |
|
*> On entry, TRANSB specifies the form of op( B ) to be used in |
|
*> the matrix multiplication as follows: |
|
*> |
|
*> TRANSB = 'N' or 'n', op( B ) = B. |
|
*> |
|
*> TRANSB = 'T' or 't', op( B ) = B**T. |
|
*> |
|
*> TRANSB = 'C' or 'c', op( B ) = B**T. |
|
*> \endverbatim |
|
*> |
|
*> \param[in] M |
|
*> \verbatim |
|
*> M is INTEGER |
|
*> On entry, M specifies the number of rows of the matrix |
|
*> op( A ) and of the matrix C. M must be at least zero. |
|
*> \endverbatim |
|
*> |
|
*> \param[in] N |
|
*> \verbatim |
|
*> N is INTEGER |
|
*> On entry, N specifies the number of columns of the matrix |
|
*> op( B ) and the number of columns of the matrix C. N must be |
|
*> at least zero. |
|
*> \endverbatim |
|
*> |
|
*> \param[in] K |
|
*> \verbatim |
|
*> K is INTEGER |
|
*> On entry, K specifies the number of columns of the matrix |
|
*> op( A ) and the number of rows of the matrix op( B ). K must |
|
*> be at least zero. |
|
*> \endverbatim |
|
*> |
|
*> \param[in] ALPHA |
|
*> \verbatim |
|
*> ALPHA is DOUBLE PRECISION. |
|
*> On entry, ALPHA specifies the scalar alpha. |
|
*> \endverbatim |
|
*> |
|
*> \param[in] A |
|
*> \verbatim |
|
*> A is DOUBLE PRECISION array, dimension ( LDA, ka ), where ka is |
|
*> k when TRANSA = 'N' or 'n', and is m otherwise. |
|
*> Before entry with TRANSA = 'N' or 'n', the leading m by k |
|
*> part of the array A must contain the matrix A, otherwise |
|
*> the leading k by m part of the array A must contain the |
|
*> matrix A. |
|
*> \endverbatim |
|
*> |
|
*> \param[in] LDA |
|
*> \verbatim |
|
*> LDA is INTEGER |
|
*> On entry, LDA specifies the first dimension of A as declared |
|
*> in the calling (sub) program. When TRANSA = 'N' or 'n' then |
|
*> LDA must be at least max( 1, m ), otherwise LDA must be at |
|
*> least max( 1, k ). |
|
*> \endverbatim |
|
*> |
|
*> \param[in] B |
|
*> \verbatim |
|
*> B is DOUBLE PRECISION array, dimension ( LDB, kb ), where kb is |
|
*> n when TRANSB = 'N' or 'n', and is k otherwise. |
|
*> Before entry with TRANSB = 'N' or 'n', the leading k by n |
|
*> part of the array B must contain the matrix B, otherwise |
|
*> the leading n by k part of the array B must contain the |
|
*> matrix B. |
|
*> \endverbatim |
|
*> |
|
*> \param[in] LDB |
|
*> \verbatim |
|
*> LDB is INTEGER |
|
*> On entry, LDB specifies the first dimension of B as declared |
|
*> in the calling (sub) program. When TRANSB = 'N' or 'n' then |
|
*> LDB must be at least max( 1, k ), otherwise LDB must be at |
|
*> least max( 1, n ). |
|
*> \endverbatim |
|
*> |
|
*> \param[in] BETA |
|
*> \verbatim |
|
*> BETA is DOUBLE PRECISION. |
|
*> On entry, BETA specifies the scalar beta. When BETA is |
|
*> supplied as zero then C need not be set on input. |
|
*> \endverbatim |
|
*> |
|
*> \param[in,out] C |
|
*> \verbatim |
|
*> C is DOUBLE PRECISION array, dimension ( LDC, N ) |
|
*> Before entry, the leading m by n part of the array C must |
|
*> contain the matrix C, except when beta is zero, in which |
|
*> case C need not be set on entry. |
|
*> On exit, the array C is overwritten by the m by n matrix |
|
*> ( alpha*op( A )*op( B ) + beta*C ). |
|
*> \endverbatim |
|
*> |
|
*> \param[in] LDC |
|
*> \verbatim |
|
*> LDC is INTEGER |
|
*> On entry, LDC specifies the first dimension of C as declared |
|
*> in the calling (sub) program. LDC must be at least |
|
*> max( 1, m ). |
|
*> \endverbatim |
|
* |
|
* Authors: |
|
* ======== |
|
* |
|
*> \author Univ. of Tennessee |
|
*> \author Univ. of California Berkeley |
|
*> \author Univ. of Colorado Denver |
|
*> \author NAG Ltd. |
|
* |
|
*> \ingroup double_blas_level3 |
|
* |
|
*> \par Further Details: |
|
* ===================== |
|
*> |
|
*> \verbatim |
|
*> |
|
*> Level 3 Blas routine. |
|
*> |
|
*> -- Written on 8-February-1989. |
|
*> Jack Dongarra, Argonne National Laboratory. |
|
*> Iain Duff, AERE Harwell. |
|
*> Jeremy Du Croz, Numerical Algorithms Group Ltd. |
|
*> Sven Hammarling, Numerical Algorithms Group Ltd. |
|
*> \endverbatim |
|
*> |
|
* ===================================================================== |
SUBROUTINE DGEMM(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC) |
SUBROUTINE DGEMM(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC) |
|
* |
|
* -- Reference BLAS level3 routine -- |
|
* -- Reference BLAS is a software package provided by Univ. of Tennessee, -- |
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- |
|
* |
* .. Scalar Arguments .. |
* .. Scalar Arguments .. |
DOUBLE PRECISION ALPHA,BETA |
DOUBLE PRECISION ALPHA,BETA |
INTEGER K,LDA,LDB,LDC,M,N |
INTEGER K,LDA,LDB,LDC,M,N |
Line 8
|
Line 198
|
DOUBLE PRECISION A(LDA,*),B(LDB,*),C(LDC,*) |
DOUBLE PRECISION A(LDA,*),B(LDB,*),C(LDC,*) |
* .. |
* .. |
* |
* |
* Purpose |
|
* ======= |
|
* |
|
* DGEMM performs one of the matrix-matrix operations |
|
* |
|
* C := alpha*op( A )*op( B ) + beta*C, |
|
* |
|
* where op( X ) is one of |
|
* |
|
* op( X ) = X or op( X ) = X', |
|
* |
|
* alpha and beta are scalars, and A, B and C are matrices, with op( A ) |
|
* an m by k matrix, op( B ) a k by n matrix and C an m by n matrix. |
|
* |
|
* Arguments |
|
* ========== |
|
* |
|
* TRANSA - CHARACTER*1. |
|
* On entry, TRANSA specifies the form of op( A ) to be used in |
|
* the matrix multiplication as follows: |
|
* |
|
* TRANSA = 'N' or 'n', op( A ) = A. |
|
* |
|
* TRANSA = 'T' or 't', op( A ) = A'. |
|
* |
|
* TRANSA = 'C' or 'c', op( A ) = A'. |
|
* |
|
* Unchanged on exit. |
|
* |
|
* TRANSB - CHARACTER*1. |
|
* On entry, TRANSB specifies the form of op( B ) to be used in |
|
* the matrix multiplication as follows: |
|
* |
|
* TRANSB = 'N' or 'n', op( B ) = B. |
|
* |
|
* TRANSB = 'T' or 't', op( B ) = B'. |
|
* |
|
* TRANSB = 'C' or 'c', op( B ) = B'. |
|
* |
|
* Unchanged on exit. |
|
* |
|
* M - INTEGER. |
|
* On entry, M specifies the number of rows of the matrix |
|
* op( A ) and of the matrix C. M must be at least zero. |
|
* Unchanged on exit. |
|
* |
|
* N - INTEGER. |
|
* On entry, N specifies the number of columns of the matrix |
|
* op( B ) and the number of columns of the matrix C. N must be |
|
* at least zero. |
|
* Unchanged on exit. |
|
* |
|
* K - INTEGER. |
|
* On entry, K specifies the number of columns of the matrix |
|
* op( A ) and the number of rows of the matrix op( B ). K must |
|
* be at least zero. |
|
* Unchanged on exit. |
|
* |
|
* ALPHA - DOUBLE PRECISION. |
|
* On entry, ALPHA specifies the scalar alpha. |
|
* Unchanged on exit. |
|
* |
|
* A - DOUBLE PRECISION array of DIMENSION ( LDA, ka ), where ka is |
|
* k when TRANSA = 'N' or 'n', and is m otherwise. |
|
* Before entry with TRANSA = 'N' or 'n', the leading m by k |
|
* part of the array A must contain the matrix A, otherwise |
|
* the leading k by m part of the array A must contain the |
|
* matrix A. |
|
* Unchanged on exit. |
|
* |
|
* LDA - INTEGER. |
|
* On entry, LDA specifies the first dimension of A as declared |
|
* in the calling (sub) program. When TRANSA = 'N' or 'n' then |
|
* LDA must be at least max( 1, m ), otherwise LDA must be at |
|
* least max( 1, k ). |
|
* Unchanged on exit. |
|
* |
|
* B - DOUBLE PRECISION array of DIMENSION ( LDB, kb ), where kb is |
|
* n when TRANSB = 'N' or 'n', and is k otherwise. |
|
* Before entry with TRANSB = 'N' or 'n', the leading k by n |
|
* part of the array B must contain the matrix B, otherwise |
|
* the leading n by k part of the array B must contain the |
|
* matrix B. |
|
* Unchanged on exit. |
|
* |
|
* LDB - INTEGER. |
|
* On entry, LDB specifies the first dimension of B as declared |
|
* in the calling (sub) program. When TRANSB = 'N' or 'n' then |
|
* LDB must be at least max( 1, k ), otherwise LDB must be at |
|
* least max( 1, n ). |
|
* Unchanged on exit. |
|
* |
|
* BETA - DOUBLE PRECISION. |
|
* On entry, BETA specifies the scalar beta. When BETA is |
|
* supplied as zero then C need not be set on input. |
|
* Unchanged on exit. |
|
* |
|
* C - DOUBLE PRECISION array of DIMENSION ( LDC, n ). |
|
* Before entry, the leading m by n part of the array C must |
|
* contain the matrix C, except when beta is zero, in which |
|
* case C need not be set on entry. |
|
* On exit, the array C is overwritten by the m by n matrix |
|
* ( alpha*op( A )*op( B ) + beta*C ). |
|
* |
|
* LDC - INTEGER. |
|
* On entry, LDC specifies the first dimension of C as declared |
|
* in the calling (sub) program. LDC must be at least |
|
* max( 1, m ). |
|
* Unchanged on exit. |
|
* |
|
* Further Details |
|
* =============== |
|
* |
|
* Level 3 Blas routine. |
|
* |
|
* -- Written on 8-February-1989. |
|
* Jack Dongarra, Argonne National Laboratory. |
|
* Iain Duff, AERE Harwell. |
|
* Jeremy Du Croz, Numerical Algorithms Group Ltd. |
|
* Sven Hammarling, Numerical Algorithms Group Ltd. |
|
* |
|
* ===================================================================== |
* ===================================================================== |
* |
* |
* .. External Functions .. |
* .. External Functions .. |
Line 143
|
Line 212
|
* .. |
* .. |
* .. Local Scalars .. |
* .. Local Scalars .. |
DOUBLE PRECISION TEMP |
DOUBLE PRECISION TEMP |
INTEGER I,INFO,J,L,NCOLA,NROWA,NROWB |
INTEGER I,INFO,J,L,NROWA,NROWB |
LOGICAL NOTA,NOTB |
LOGICAL NOTA,NOTB |
* .. |
* .. |
* .. Parameters .. |
* .. Parameters .. |
Line 152
|
Line 221
|
* .. |
* .. |
* |
* |
* Set NOTA and NOTB as true if A and B respectively are not |
* Set NOTA and NOTB as true if A and B respectively are not |
* transposed and set NROWA, NCOLA and NROWB as the number of rows |
* transposed and set NROWA and NROWB as the number of rows of A |
* and columns of A and the number of rows of B respectively. |
* and B respectively. |
* |
* |
NOTA = LSAME(TRANSA,'N') |
NOTA = LSAME(TRANSA,'N') |
NOTB = LSAME(TRANSB,'N') |
NOTB = LSAME(TRANSB,'N') |
IF (NOTA) THEN |
IF (NOTA) THEN |
NROWA = M |
NROWA = M |
NCOLA = K |
|
ELSE |
ELSE |
NROWA = K |
NROWA = K |
NCOLA = M |
|
END IF |
END IF |
IF (NOTB) THEN |
IF (NOTB) THEN |
NROWB = K |
NROWB = K |
Line 239
|
Line 306
|
60 CONTINUE |
60 CONTINUE |
END IF |
END IF |
DO 80 L = 1,K |
DO 80 L = 1,K |
IF (B(L,J).NE.ZERO) THEN |
TEMP = ALPHA*B(L,J) |
TEMP = ALPHA*B(L,J) |
DO 70 I = 1,M |
DO 70 I = 1,M |
C(I,J) = C(I,J) + TEMP*A(I,L) |
C(I,J) = C(I,J) + TEMP*A(I,L) |
70 CONTINUE |
70 CONTINUE |
|
END IF |
|
80 CONTINUE |
80 CONTINUE |
90 CONTINUE |
90 CONTINUE |
ELSE |
ELSE |
* |
* |
* Form C := alpha*A'*B + beta*C |
* Form C := alpha*A**T*B + beta*C |
* |
* |
DO 120 J = 1,N |
DO 120 J = 1,N |
DO 110 I = 1,M |
DO 110 I = 1,M |
Line 268
|
Line 333
|
ELSE |
ELSE |
IF (NOTA) THEN |
IF (NOTA) THEN |
* |
* |
* Form C := alpha*A*B' + beta*C |
* Form C := alpha*A*B**T + beta*C |
* |
* |
DO 170 J = 1,N |
DO 170 J = 1,N |
IF (BETA.EQ.ZERO) THEN |
IF (BETA.EQ.ZERO) THEN |
Line 281
|
Line 346
|
140 CONTINUE |
140 CONTINUE |
END IF |
END IF |
DO 160 L = 1,K |
DO 160 L = 1,K |
IF (B(J,L).NE.ZERO) THEN |
TEMP = ALPHA*B(J,L) |
TEMP = ALPHA*B(J,L) |
DO 150 I = 1,M |
DO 150 I = 1,M |
C(I,J) = C(I,J) + TEMP*A(I,L) |
C(I,J) = C(I,J) + TEMP*A(I,L) |
150 CONTINUE |
150 CONTINUE |
|
END IF |
|
160 CONTINUE |
160 CONTINUE |
170 CONTINUE |
170 CONTINUE |
ELSE |
ELSE |
* |
* |
* Form C := alpha*A'*B' + beta*C |
* Form C := alpha*A**T*B**T + beta*C |
* |
* |
DO 200 J = 1,N |
DO 200 J = 1,N |
DO 190 I = 1,M |
DO 190 I = 1,M |
Line 311
|
Line 374
|
* |
* |
RETURN |
RETURN |
* |
* |
* End of DGEMM . |
* End of DGEMM |
* |
* |
END |
END |