File:  [local] / rpl / lapack / blas / dgbmv.f
Revision 1.7: download - view: text, annotated - select for diffs - revision graph
Fri Jul 22 07:38:01 2011 UTC (12 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_3, rpl-4_1_2, rpl-4_1_1, HEAD
En route vers la 4.4.1.

    1:       SUBROUTINE DGBMV(TRANS,M,N,KL,KU,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
    2: *     .. Scalar Arguments ..
    3:       DOUBLE PRECISION ALPHA,BETA
    4:       INTEGER INCX,INCY,KL,KU,LDA,M,N
    5:       CHARACTER TRANS
    6: *     ..
    7: *     .. Array Arguments ..
    8:       DOUBLE PRECISION A(LDA,*),X(*),Y(*)
    9: *     ..
   10: *
   11: *  Purpose
   12: *  =======
   13: *
   14: *  DGBMV  performs one of the matrix-vector operations
   15: *
   16: *     y := alpha*A*x + beta*y,   or   y := alpha*A**T*x + beta*y,
   17: *
   18: *  where alpha and beta are scalars, x and y are vectors and A is an
   19: *  m by n band matrix, with kl sub-diagonals and ku super-diagonals.
   20: *
   21: *  Arguments
   22: *  ==========
   23: *
   24: *  TRANS  - CHARACTER*1.
   25: *           On entry, TRANS specifies the operation to be performed as
   26: *           follows:
   27: *
   28: *              TRANS = 'N' or 'n'   y := alpha*A*x + beta*y.
   29: *
   30: *              TRANS = 'T' or 't'   y := alpha*A**T*x + beta*y.
   31: *
   32: *              TRANS = 'C' or 'c'   y := alpha*A**T*x + beta*y.
   33: *
   34: *           Unchanged on exit.
   35: *
   36: *  M      - INTEGER.
   37: *           On entry, M specifies the number of rows of the matrix A.
   38: *           M must be at least zero.
   39: *           Unchanged on exit.
   40: *
   41: *  N      - INTEGER.
   42: *           On entry, N specifies the number of columns of the matrix A.
   43: *           N must be at least zero.
   44: *           Unchanged on exit.
   45: *
   46: *  KL     - INTEGER.
   47: *           On entry, KL specifies the number of sub-diagonals of the
   48: *           matrix A. KL must satisfy  0 .le. KL.
   49: *           Unchanged on exit.
   50: *
   51: *  KU     - INTEGER.
   52: *           On entry, KU specifies the number of super-diagonals of the
   53: *           matrix A. KU must satisfy  0 .le. KU.
   54: *           Unchanged on exit.
   55: *
   56: *  ALPHA  - DOUBLE PRECISION.
   57: *           On entry, ALPHA specifies the scalar alpha.
   58: *           Unchanged on exit.
   59: *
   60: *  A      - DOUBLE PRECISION array of DIMENSION ( LDA, n ).
   61: *           Before entry, the leading ( kl + ku + 1 ) by n part of the
   62: *           array A must contain the matrix of coefficients, supplied
   63: *           column by column, with the leading diagonal of the matrix in
   64: *           row ( ku + 1 ) of the array, the first super-diagonal
   65: *           starting at position 2 in row ku, the first sub-diagonal
   66: *           starting at position 1 in row ( ku + 2 ), and so on.
   67: *           Elements in the array A that do not correspond to elements
   68: *           in the band matrix (such as the top left ku by ku triangle)
   69: *           are not referenced.
   70: *           The following program segment will transfer a band matrix
   71: *           from conventional full matrix storage to band storage:
   72: *
   73: *                 DO 20, J = 1, N
   74: *                    K = KU + 1 - J
   75: *                    DO 10, I = MAX( 1, J - KU ), MIN( M, J + KL )
   76: *                       A( K + I, J ) = matrix( I, J )
   77: *              10    CONTINUE
   78: *              20 CONTINUE
   79: *
   80: *           Unchanged on exit.
   81: *
   82: *  LDA    - INTEGER.
   83: *           On entry, LDA specifies the first dimension of A as declared
   84: *           in the calling (sub) program. LDA must be at least
   85: *           ( kl + ku + 1 ).
   86: *           Unchanged on exit.
   87: *
   88: *  X      - DOUBLE PRECISION array of DIMENSION at least
   89: *           ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
   90: *           and at least
   91: *           ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
   92: *           Before entry, the incremented array X must contain the
   93: *           vector x.
   94: *           Unchanged on exit.
   95: *
   96: *  INCX   - INTEGER.
   97: *           On entry, INCX specifies the increment for the elements of
   98: *           X. INCX must not be zero.
   99: *           Unchanged on exit.
  100: *
  101: *  BETA   - DOUBLE PRECISION.
  102: *           On entry, BETA specifies the scalar beta. When BETA is
  103: *           supplied as zero then Y need not be set on input.
  104: *           Unchanged on exit.
  105: *
  106: *  Y      - DOUBLE PRECISION array of DIMENSION at least
  107: *           ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
  108: *           and at least
  109: *           ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
  110: *           Before entry, the incremented array Y must contain the
  111: *           vector y. On exit, Y is overwritten by the updated vector y.
  112: *
  113: *  INCY   - INTEGER.
  114: *           On entry, INCY specifies the increment for the elements of
  115: *           Y. INCY must not be zero.
  116: *           Unchanged on exit.
  117: *
  118: *  Further Details
  119: *  ===============
  120: *
  121: *  Level 2 Blas routine.
  122: *  The vector and matrix arguments are not referenced when N = 0, or M = 0
  123: *
  124: *  -- Written on 22-October-1986.
  125: *     Jack Dongarra, Argonne National Lab.
  126: *     Jeremy Du Croz, Nag Central Office.
  127: *     Sven Hammarling, Nag Central Office.
  128: *     Richard Hanson, Sandia National Labs.
  129: *
  130: *  =====================================================================
  131: *
  132: *     .. Parameters ..
  133:       DOUBLE PRECISION ONE,ZERO
  134:       PARAMETER (ONE=1.0D+0,ZERO=0.0D+0)
  135: *     ..
  136: *     .. Local Scalars ..
  137:       DOUBLE PRECISION TEMP
  138:       INTEGER I,INFO,IX,IY,J,JX,JY,K,KUP1,KX,KY,LENX,LENY
  139: *     ..
  140: *     .. External Functions ..
  141:       LOGICAL LSAME
  142:       EXTERNAL LSAME
  143: *     ..
  144: *     .. External Subroutines ..
  145:       EXTERNAL XERBLA
  146: *     ..
  147: *     .. Intrinsic Functions ..
  148:       INTRINSIC MAX,MIN
  149: *     ..
  150: *
  151: *     Test the input parameters.
  152: *
  153:       INFO = 0
  154:       IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
  155:      +    .NOT.LSAME(TRANS,'C')) THEN
  156:           INFO = 1
  157:       ELSE IF (M.LT.0) THEN
  158:           INFO = 2
  159:       ELSE IF (N.LT.0) THEN
  160:           INFO = 3
  161:       ELSE IF (KL.LT.0) THEN
  162:           INFO = 4
  163:       ELSE IF (KU.LT.0) THEN
  164:           INFO = 5
  165:       ELSE IF (LDA.LT. (KL+KU+1)) THEN
  166:           INFO = 8
  167:       ELSE IF (INCX.EQ.0) THEN
  168:           INFO = 10
  169:       ELSE IF (INCY.EQ.0) THEN
  170:           INFO = 13
  171:       END IF
  172:       IF (INFO.NE.0) THEN
  173:           CALL XERBLA('DGBMV ',INFO)
  174:           RETURN
  175:       END IF
  176: *
  177: *     Quick return if possible.
  178: *
  179:       IF ((M.EQ.0) .OR. (N.EQ.0) .OR.
  180:      +    ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
  181: *
  182: *     Set  LENX  and  LENY, the lengths of the vectors x and y, and set
  183: *     up the start points in  X  and  Y.
  184: *
  185:       IF (LSAME(TRANS,'N')) THEN
  186:           LENX = N
  187:           LENY = M
  188:       ELSE
  189:           LENX = M
  190:           LENY = N
  191:       END IF
  192:       IF (INCX.GT.0) THEN
  193:           KX = 1
  194:       ELSE
  195:           KX = 1 - (LENX-1)*INCX
  196:       END IF
  197:       IF (INCY.GT.0) THEN
  198:           KY = 1
  199:       ELSE
  200:           KY = 1 - (LENY-1)*INCY
  201:       END IF
  202: *
  203: *     Start the operations. In this version the elements of A are
  204: *     accessed sequentially with one pass through the band part of A.
  205: *
  206: *     First form  y := beta*y.
  207: *
  208:       IF (BETA.NE.ONE) THEN
  209:           IF (INCY.EQ.1) THEN
  210:               IF (BETA.EQ.ZERO) THEN
  211:                   DO 10 I = 1,LENY
  212:                       Y(I) = ZERO
  213:    10             CONTINUE
  214:               ELSE
  215:                   DO 20 I = 1,LENY
  216:                       Y(I) = BETA*Y(I)
  217:    20             CONTINUE
  218:               END IF
  219:           ELSE
  220:               IY = KY
  221:               IF (BETA.EQ.ZERO) THEN
  222:                   DO 30 I = 1,LENY
  223:                       Y(IY) = ZERO
  224:                       IY = IY + INCY
  225:    30             CONTINUE
  226:               ELSE
  227:                   DO 40 I = 1,LENY
  228:                       Y(IY) = BETA*Y(IY)
  229:                       IY = IY + INCY
  230:    40             CONTINUE
  231:               END IF
  232:           END IF
  233:       END IF
  234:       IF (ALPHA.EQ.ZERO) RETURN
  235:       KUP1 = KU + 1
  236:       IF (LSAME(TRANS,'N')) THEN
  237: *
  238: *        Form  y := alpha*A*x + y.
  239: *
  240:           JX = KX
  241:           IF (INCY.EQ.1) THEN
  242:               DO 60 J = 1,N
  243:                   IF (X(JX).NE.ZERO) THEN
  244:                       TEMP = ALPHA*X(JX)
  245:                       K = KUP1 - J
  246:                       DO 50 I = MAX(1,J-KU),MIN(M,J+KL)
  247:                           Y(I) = Y(I) + TEMP*A(K+I,J)
  248:    50                 CONTINUE
  249:                   END IF
  250:                   JX = JX + INCX
  251:    60         CONTINUE
  252:           ELSE
  253:               DO 80 J = 1,N
  254:                   IF (X(JX).NE.ZERO) THEN
  255:                       TEMP = ALPHA*X(JX)
  256:                       IY = KY
  257:                       K = KUP1 - J
  258:                       DO 70 I = MAX(1,J-KU),MIN(M,J+KL)
  259:                           Y(IY) = Y(IY) + TEMP*A(K+I,J)
  260:                           IY = IY + INCY
  261:    70                 CONTINUE
  262:                   END IF
  263:                   JX = JX + INCX
  264:                   IF (J.GT.KU) KY = KY + INCY
  265:    80         CONTINUE
  266:           END IF
  267:       ELSE
  268: *
  269: *        Form  y := alpha*A**T*x + y.
  270: *
  271:           JY = KY
  272:           IF (INCX.EQ.1) THEN
  273:               DO 100 J = 1,N
  274:                   TEMP = ZERO
  275:                   K = KUP1 - J
  276:                   DO 90 I = MAX(1,J-KU),MIN(M,J+KL)
  277:                       TEMP = TEMP + A(K+I,J)*X(I)
  278:    90             CONTINUE
  279:                   Y(JY) = Y(JY) + ALPHA*TEMP
  280:                   JY = JY + INCY
  281:   100         CONTINUE
  282:           ELSE
  283:               DO 120 J = 1,N
  284:                   TEMP = ZERO
  285:                   IX = KX
  286:                   K = KUP1 - J
  287:                   DO 110 I = MAX(1,J-KU),MIN(M,J+KL)
  288:                       TEMP = TEMP + A(K+I,J)*X(IX)
  289:                       IX = IX + INCX
  290:   110             CONTINUE
  291:                   Y(JY) = Y(JY) + ALPHA*TEMP
  292:                   JY = JY + INCY
  293:                   IF (J.GT.KU) KX = KX + INCX
  294:   120         CONTINUE
  295:           END IF
  296:       END IF
  297: *
  298:       RETURN
  299: *
  300: *     End of DGBMV .
  301: *
  302:       END

CVSweb interface <joel.bertrand@systella.fr>