File:  [local] / rpl / lapack / blas / dgbmv.f
Revision 1.6: download - view: text, annotated - select for diffs - revision graph
Tue Dec 21 13:51:24 2010 UTC (13 years, 4 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_0, rpl-4_0_24, rpl-4_0_22, rpl-4_0_21, rpl-4_0_20, rpl-4_0, HEAD
Mise à jour de lapack vers la version 3.3.0

    1:       SUBROUTINE DGBMV(TRANS,M,N,KL,KU,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
    2: *     .. Scalar Arguments ..
    3:       DOUBLE PRECISION ALPHA,BETA
    4:       INTEGER INCX,INCY,KL,KU,LDA,M,N
    5:       CHARACTER TRANS
    6: *     ..
    7: *     .. Array Arguments ..
    8:       DOUBLE PRECISION A(LDA,*),X(*),Y(*)
    9: *     ..
   10: *
   11: *  Purpose
   12: *  =======
   13: *
   14: *  DGBMV  performs one of the matrix-vector operations
   15: *
   16: *     y := alpha*A*x + beta*y,   or   y := alpha*A'*x + beta*y,
   17: *
   18: *  where alpha and beta are scalars, x and y are vectors and A is an
   19: *  m by n band matrix, with kl sub-diagonals and ku super-diagonals.
   20: *
   21: *  Arguments
   22: *  ==========
   23: *
   24: *  TRANS  - CHARACTER*1.
   25: *           On entry, TRANS specifies the operation to be performed as
   26: *           follows:
   27: *
   28: *              TRANS = 'N' or 'n'   y := alpha*A*x + beta*y.
   29: *
   30: *              TRANS = 'T' or 't'   y := alpha*A'*x + beta*y.
   31: *
   32: *              TRANS = 'C' or 'c'   y := alpha*A'*x + beta*y.
   33: *
   34: *           Unchanged on exit.
   35: *
   36: *  M      - INTEGER.
   37: *           On entry, M specifies the number of rows of the matrix A.
   38: *           M must be at least zero.
   39: *           Unchanged on exit.
   40: *
   41: *  N      - INTEGER.
   42: *           On entry, N specifies the number of columns of the matrix A.
   43: *           N must be at least zero.
   44: *           Unchanged on exit.
   45: *
   46: *  KL     - INTEGER.
   47: *           On entry, KL specifies the number of sub-diagonals of the
   48: *           matrix A. KL must satisfy  0 .le. KL.
   49: *           Unchanged on exit.
   50: *
   51: *  KU     - INTEGER.
   52: *           On entry, KU specifies the number of super-diagonals of the
   53: *           matrix A. KU must satisfy  0 .le. KU.
   54: *           Unchanged on exit.
   55: *
   56: *  ALPHA  - DOUBLE PRECISION.
   57: *           On entry, ALPHA specifies the scalar alpha.
   58: *           Unchanged on exit.
   59: *
   60: *  A      - DOUBLE PRECISION array of DIMENSION ( LDA, n ).
   61: *           Before entry, the leading ( kl + ku + 1 ) by n part of the
   62: *           array A must contain the matrix of coefficients, supplied
   63: *           column by column, with the leading diagonal of the matrix in
   64: *           row ( ku + 1 ) of the array, the first super-diagonal
   65: *           starting at position 2 in row ku, the first sub-diagonal
   66: *           starting at position 1 in row ( ku + 2 ), and so on.
   67: *           Elements in the array A that do not correspond to elements
   68: *           in the band matrix (such as the top left ku by ku triangle)
   69: *           are not referenced.
   70: *           The following program segment will transfer a band matrix
   71: *           from conventional full matrix storage to band storage:
   72: *
   73: *                 DO 20, J = 1, N
   74: *                    K = KU + 1 - J
   75: *                    DO 10, I = MAX( 1, J - KU ), MIN( M, J + KL )
   76: *                       A( K + I, J ) = matrix( I, J )
   77: *              10    CONTINUE
   78: *              20 CONTINUE
   79: *
   80: *           Unchanged on exit.
   81: *
   82: *  LDA    - INTEGER.
   83: *           On entry, LDA specifies the first dimension of A as declared
   84: *           in the calling (sub) program. LDA must be at least
   85: *           ( kl + ku + 1 ).
   86: *           Unchanged on exit.
   87: *
   88: *  X      - DOUBLE PRECISION array of DIMENSION at least
   89: *           ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
   90: *           and at least
   91: *           ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
   92: *           Before entry, the incremented array X must contain the
   93: *           vector x.
   94: *           Unchanged on exit.
   95: *
   96: *  INCX   - INTEGER.
   97: *           On entry, INCX specifies the increment for the elements of
   98: *           X. INCX must not be zero.
   99: *           Unchanged on exit.
  100: *
  101: *  BETA   - DOUBLE PRECISION.
  102: *           On entry, BETA specifies the scalar beta. When BETA is
  103: *           supplied as zero then Y need not be set on input.
  104: *           Unchanged on exit.
  105: *
  106: *  Y      - DOUBLE PRECISION array of DIMENSION at least
  107: *           ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
  108: *           and at least
  109: *           ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
  110: *           Before entry, the incremented array Y must contain the
  111: *           vector y. On exit, Y is overwritten by the updated vector y.
  112: *
  113: *  INCY   - INTEGER.
  114: *           On entry, INCY specifies the increment for the elements of
  115: *           Y. INCY must not be zero.
  116: *           Unchanged on exit.
  117: *
  118: *  Further Details
  119: *  ===============
  120: *
  121: *  Level 2 Blas routine.
  122: *
  123: *  -- Written on 22-October-1986.
  124: *     Jack Dongarra, Argonne National Lab.
  125: *     Jeremy Du Croz, Nag Central Office.
  126: *     Sven Hammarling, Nag Central Office.
  127: *     Richard Hanson, Sandia National Labs.
  128: *
  129: *  =====================================================================
  130: *
  131: *     .. Parameters ..
  132:       DOUBLE PRECISION ONE,ZERO
  133:       PARAMETER (ONE=1.0D+0,ZERO=0.0D+0)
  134: *     ..
  135: *     .. Local Scalars ..
  136:       DOUBLE PRECISION TEMP
  137:       INTEGER I,INFO,IX,IY,J,JX,JY,K,KUP1,KX,KY,LENX,LENY
  138: *     ..
  139: *     .. External Functions ..
  140:       LOGICAL LSAME
  141:       EXTERNAL LSAME
  142: *     ..
  143: *     .. External Subroutines ..
  144:       EXTERNAL XERBLA
  145: *     ..
  146: *     .. Intrinsic Functions ..
  147:       INTRINSIC MAX,MIN
  148: *     ..
  149: *
  150: *     Test the input parameters.
  151: *
  152:       INFO = 0
  153:       IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
  154:      +    .NOT.LSAME(TRANS,'C')) THEN
  155:           INFO = 1
  156:       ELSE IF (M.LT.0) THEN
  157:           INFO = 2
  158:       ELSE IF (N.LT.0) THEN
  159:           INFO = 3
  160:       ELSE IF (KL.LT.0) THEN
  161:           INFO = 4
  162:       ELSE IF (KU.LT.0) THEN
  163:           INFO = 5
  164:       ELSE IF (LDA.LT. (KL+KU+1)) THEN
  165:           INFO = 8
  166:       ELSE IF (INCX.EQ.0) THEN
  167:           INFO = 10
  168:       ELSE IF (INCY.EQ.0) THEN
  169:           INFO = 13
  170:       END IF
  171:       IF (INFO.NE.0) THEN
  172:           CALL XERBLA('DGBMV ',INFO)
  173:           RETURN
  174:       END IF
  175: *
  176: *     Quick return if possible.
  177: *
  178:       IF ((M.EQ.0) .OR. (N.EQ.0) .OR.
  179:      +    ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
  180: *
  181: *     Set  LENX  and  LENY, the lengths of the vectors x and y, and set
  182: *     up the start points in  X  and  Y.
  183: *
  184:       IF (LSAME(TRANS,'N')) THEN
  185:           LENX = N
  186:           LENY = M
  187:       ELSE
  188:           LENX = M
  189:           LENY = N
  190:       END IF
  191:       IF (INCX.GT.0) THEN
  192:           KX = 1
  193:       ELSE
  194:           KX = 1 - (LENX-1)*INCX
  195:       END IF
  196:       IF (INCY.GT.0) THEN
  197:           KY = 1
  198:       ELSE
  199:           KY = 1 - (LENY-1)*INCY
  200:       END IF
  201: *
  202: *     Start the operations. In this version the elements of A are
  203: *     accessed sequentially with one pass through the band part of A.
  204: *
  205: *     First form  y := beta*y.
  206: *
  207:       IF (BETA.NE.ONE) THEN
  208:           IF (INCY.EQ.1) THEN
  209:               IF (BETA.EQ.ZERO) THEN
  210:                   DO 10 I = 1,LENY
  211:                       Y(I) = ZERO
  212:    10             CONTINUE
  213:               ELSE
  214:                   DO 20 I = 1,LENY
  215:                       Y(I) = BETA*Y(I)
  216:    20             CONTINUE
  217:               END IF
  218:           ELSE
  219:               IY = KY
  220:               IF (BETA.EQ.ZERO) THEN
  221:                   DO 30 I = 1,LENY
  222:                       Y(IY) = ZERO
  223:                       IY = IY + INCY
  224:    30             CONTINUE
  225:               ELSE
  226:                   DO 40 I = 1,LENY
  227:                       Y(IY) = BETA*Y(IY)
  228:                       IY = IY + INCY
  229:    40             CONTINUE
  230:               END IF
  231:           END IF
  232:       END IF
  233:       IF (ALPHA.EQ.ZERO) RETURN
  234:       KUP1 = KU + 1
  235:       IF (LSAME(TRANS,'N')) THEN
  236: *
  237: *        Form  y := alpha*A*x + y.
  238: *
  239:           JX = KX
  240:           IF (INCY.EQ.1) THEN
  241:               DO 60 J = 1,N
  242:                   IF (X(JX).NE.ZERO) THEN
  243:                       TEMP = ALPHA*X(JX)
  244:                       K = KUP1 - J
  245:                       DO 50 I = MAX(1,J-KU),MIN(M,J+KL)
  246:                           Y(I) = Y(I) + TEMP*A(K+I,J)
  247:    50                 CONTINUE
  248:                   END IF
  249:                   JX = JX + INCX
  250:    60         CONTINUE
  251:           ELSE
  252:               DO 80 J = 1,N
  253:                   IF (X(JX).NE.ZERO) THEN
  254:                       TEMP = ALPHA*X(JX)
  255:                       IY = KY
  256:                       K = KUP1 - J
  257:                       DO 70 I = MAX(1,J-KU),MIN(M,J+KL)
  258:                           Y(IY) = Y(IY) + TEMP*A(K+I,J)
  259:                           IY = IY + INCY
  260:    70                 CONTINUE
  261:                   END IF
  262:                   JX = JX + INCX
  263:                   IF (J.GT.KU) KY = KY + INCY
  264:    80         CONTINUE
  265:           END IF
  266:       ELSE
  267: *
  268: *        Form  y := alpha*A'*x + y.
  269: *
  270:           JY = KY
  271:           IF (INCX.EQ.1) THEN
  272:               DO 100 J = 1,N
  273:                   TEMP = ZERO
  274:                   K = KUP1 - J
  275:                   DO 90 I = MAX(1,J-KU),MIN(M,J+KL)
  276:                       TEMP = TEMP + A(K+I,J)*X(I)
  277:    90             CONTINUE
  278:                   Y(JY) = Y(JY) + ALPHA*TEMP
  279:                   JY = JY + INCY
  280:   100         CONTINUE
  281:           ELSE
  282:               DO 120 J = 1,N
  283:                   TEMP = ZERO
  284:                   IX = KX
  285:                   K = KUP1 - J
  286:                   DO 110 I = MAX(1,J-KU),MIN(M,J+KL)
  287:                       TEMP = TEMP + A(K+I,J)*X(IX)
  288:                       IX = IX + INCX
  289:   110             CONTINUE
  290:                   Y(JY) = Y(JY) + ALPHA*TEMP
  291:                   JY = JY + INCY
  292:                   IF (J.GT.KU) KX = KX + INCX
  293:   120         CONTINUE
  294:           END IF
  295:       END IF
  296: *
  297:       RETURN
  298: *
  299: *     End of DGBMV .
  300: *
  301:       END

CVSweb interface <joel.bertrand@systella.fr>